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Research Questions

s It possible to build a system that can learn with minimal input knowledge?

To what extent is such a system capable of reasoning on its own in an explainable
and trustworthy manner?

Hypothesis

't Is possible to build a framework that relies on an incremental learning mechanism based on higher-
order concepts and accumulate new knowledge based on reasoning coupled with its existing data.



Solution: KD-LNN
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A model: A LNN base module

for reasoning and lea ming A weighted, real-valued logical neuron and its associated constraints.

(b(X,A)Ab(X,B)) = (p(A,B)Vp(B,A)) (b(X,A) Ap(A,B)) = b(X,B) (d(A,T)Ad(B,T)Ap(A,B)) - (A=B)

g A knowledge base: A graph of
concepts and their relations
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An example logical neural network structure modelling three rules.




Data Ingestion
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KD-LNN Advantages
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Neuro-symbolic network models neurons as formulae

Ontology provides domain-specific knowledge built as logical (first-order) rulesets



Experiment 1

77 Properties

Learning
* [ngest the Proton ontology

 Model classes as entities and

oroperties as relationships in

Knowledge graph

* Build logical ruleset to capture
nodes and edges

 Query LNN module to validate
learned data

25 Classes




Experiment 2

Reasoning

Ingest the BFO ontology
Generate BFO knowledge graph
Apply previous ruleset to deduce
similarities

Query LNN module to validate
correct reasoning over common
concepts and properties

8 Properties

34 Classes




Results

Axiom 1: propagate-class-instance-to-superclass (Axiom 1): VaVyVz(isinstanceOf(x,y) A

subClassO f(y, z) = (isinstanceOf(x, z)))

Axiom 2: propagate-class-property-to-instance (Axiom 2): VaVyVz(isinstanceOf(x,y) A
propertyO f(z,y) = (propertyO f(z,x)))

Axiom 3: propagate-subproperty-to-class (Axiom 3): VaVyVz(subPropertyOf(x,y) A
propertyO f(y, z) = (propertyOf(z, z)))
Axiom 4. propagate-inverse-to-class (Axiom 4): VeVyVz(inverseOf(z,y) A
propertyO f(y, z) = (propertyOf(z, z)))

First-Order Logical Experimental Ruleset

- Element Type Initial | Created | Extended | Retained | Score |
Class Node 57 () 0 57 100%
Property Node 75 0 0 75 100%
Instance Node () 3 0 3 100%
propertyOf Relation | 60 0 3 63 100%
subPropertyOf | Relation | 30 0 0 30 100%
inverseOf Relation | 7 () 0 7 100%
subClassOf Relation | 57 () 0 57 100%
instanceOf Relation | 0 3 6 Y 100%

KD-LNN learning and reasoning results



Conclusion

« KD-LNN leverages the power of Neural Networks to handle large-scale ana
complex data

« KD-LNN uses a rule-based framework to provide transparent, explainable and
transferable learning

o KD-LNN is domain-agnostic

« KD-LNN overcomes the “Big Data” and compute constraints



Research Directions

o Domain-specific autonomous learners

» Consolidated Upper-Level Universal Ontology

 Multi-language conversational agents



Thank You
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