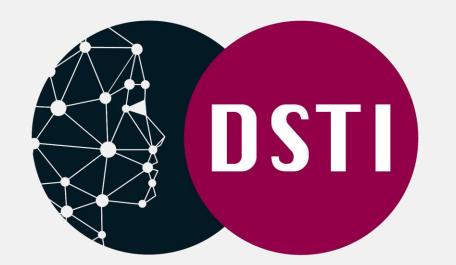
computing conference 2023

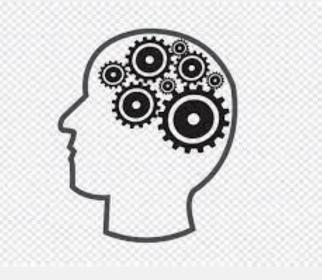
The Path to Autonomous Learners



- Hanna Abi Akl
- **Data ScienceTech Institute**
- hanna.abi-akl@dsti.institute

Data ScienceTech Institute

Research Questions



Is it possible to build a system that can learn with minimal input knowledge?

To what extent is such a system capable of reasoning on its own in an explainable and trustworthy manner?

Hypothesis

It is possible to build a framework that relies on an incremental learning mechanism based on higherorder concepts and accumulate new knowledge based on reasoning coupled with its existing data.

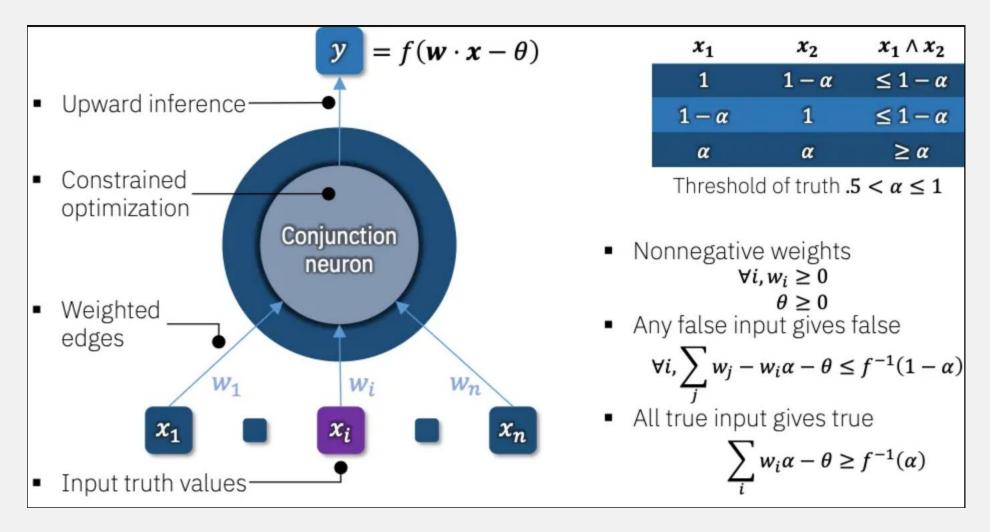
Solution: KD-LNN

<u>Knowledge-Driven Logical Neural Network is a</u> theoretical framework based on:

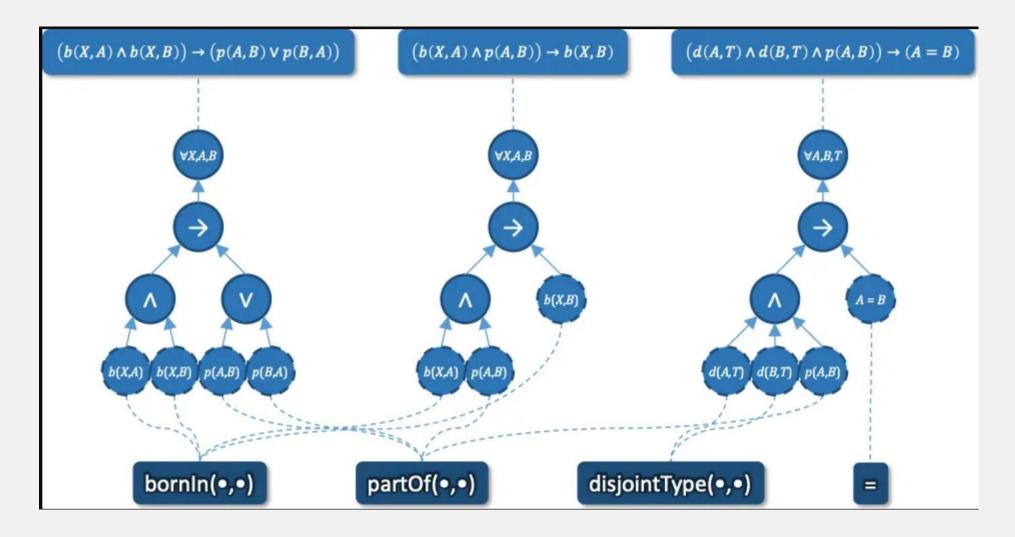
A model: A LNN base module for reasoning and learning

A knowledge base: A graph of concepts and their relations

A minimal input knowledge source: A starting set of concepts that serves as its initial data



A weighted, real-valued logical neuron and its associated constraints.



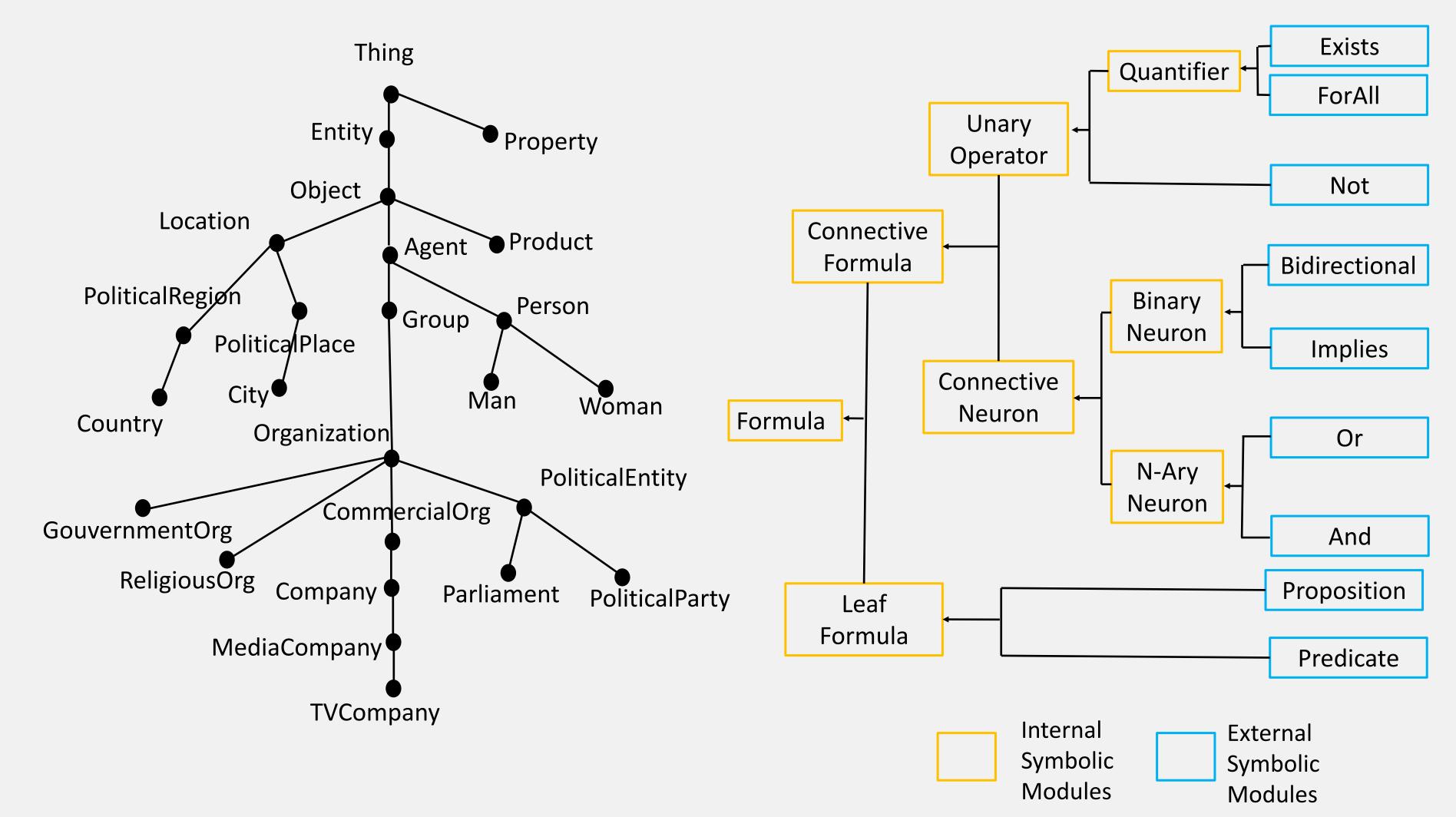
An example logical neural network structure modelling three rules.

KD-LNN Architecture

Data Ingestion

Top Module

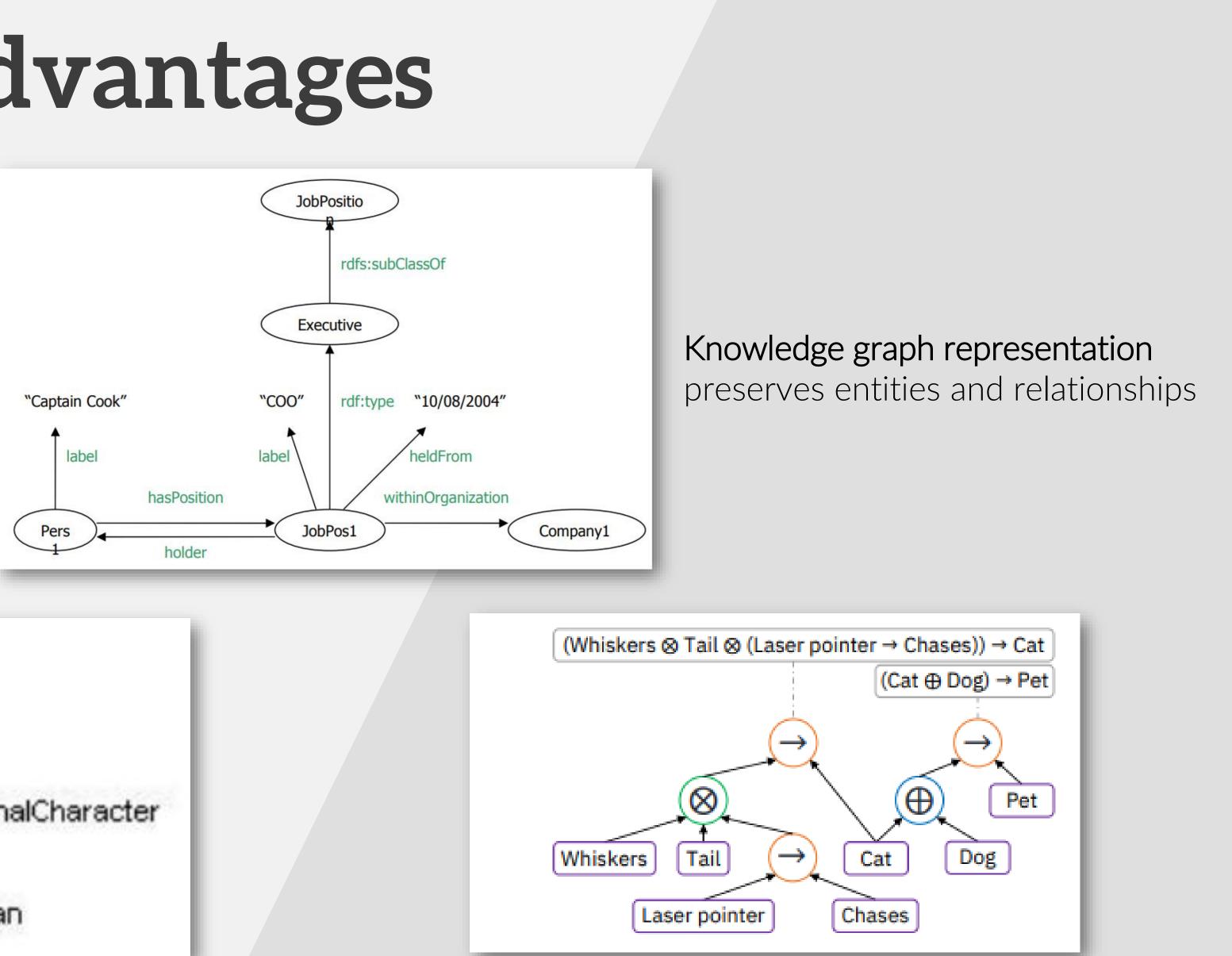
Abstract ContactInformation Document Event GeneralTerm Group Happening InformationResource Job Position Language Location Number Object Organization Person ProductModel Rôle Service Situation SocialPosition Statement



Data Modelling

Learning & Reasoning

KD-LNN Advantages



Ontology provides domain-specific knowledge

Neuro-symbolic network models neurons as formulae built as logical (first-order) rulesets

Experiment 1

Learning

- Ingest the Proton ontology
- Model classes as entities and properties as relationships in knowledge graph
- Build logical ruleset to capture nodes and edges
- Query LNN module to validate learned data

77 Properties

Proton Ontology

25 Classes

Experiment 2

Reasoning

- Ingest the BFO ontology
- Generate BFO knowledge graph
- Apply previous ruleset to deduce similarities
- Query LNN module to validate correct reasoning over common concepts and properties

8 Properties

Basic Formal Ontology (BFO)

34 Classes

Results

Axiom 1: propagate-class-instance-to-super $subClassOf(y, z) \Longrightarrow (isinstanceOf(x, z))$ Axiom 2: propagate-class-property-to-insta $propertyOf(z, y) \Longrightarrow (propertyOf(z, x)))$ Axiom 3: propagate-subproperty-to-class $propertyOf(y, z) \Longrightarrow (propertyOf(x, z)))$ Axiom 4: propagate-inverse-to-class $propertyOf(y, z) \Longrightarrow (propertyOf(x, z)))$

Element	Туре	Initial	Created	Extended	Retained	Score
Class	Node	57	0	0	57	100%
Property	Node	75	0	0	75	100%
Instance	Node	0	3	0	3	100%
propertyOf	Relation	60	0	3	63	100%
subPropertyOf	Relation	30	0	0	30	100%
inverseOf	Relation	7	0	0	7	100%
subClassOf	Relation	57	0	0	57	100%
instanceOf	Relation	0	3	6	9	100%

KD-LNN learning and reasoning results

rclass (Ax)))	iom 1):	$\forall x \forall y \forall z (isinstanceOf(x, y) \land$	L
ance (Axi	om 2):	$\forall x \forall y \forall z (isinstanceOf(x, y) \land$	L
(Axiom	3): ∀	$x \forall y \forall z (subPropertyOf(x, y) \land$	L
(Axiom	4):	$\forall x \forall y \forall z (inverseOf(x, y) \land$	L

First-Order Logical Experimental Ruleset

Conclusion

- complex data
- transferable learning
- KD-LNN is domain-agnostic
- KD-LNN overcomes the "Big Data" and compute constraints

• KD-LNN leverages the power of Neural Networks to handle large-scale and

• KD-LNN uses a rule-based framework to provide transparent, explainable and

Research Directions

• Domain-specific autonomous learners

Consolidated Upper-Level Universal Ontology

• Multi-language conversational agents

Thank You